

STAR Update Results for U+U Collisions at 193 GeV

Gang Wang (UCLA)

for the STAR Collaboration

Motivation

The prolate shape of uranium nuclei provides the possibility to study

- Particle production mechanism
- Anisotropic flow
 - ❖ any difference between Au+Au and U+U?
 - separate body-body and tip-tip in U+U?
- Chiral Magnetic Effects
 - \clubsuit LPV signal induced by v_2 ?
- Path-length dependence of hard probes
 - heavy flavor

Au+Au Collisions

Oblate(on average)

U+U Collisions

Prolate(on average)

Successful data taking

- RHIC run12: 4 weeks of U+U
- ❖ Data taking efficiency: 84%
- ❖ Triggers with pile-up protection
- ❖ No major detector issues

Can we see any difference between Au+Au and U+U?

Can we see a difference between Au+Au and U+U?

We often assume multiplicity depends on both the number of participants and the number of binary collisions:

$$N_{ch} = n_{pp} * [xN_{coll} + (1-x)N_{part}/2].$$

A larger system produces more particles?

Yes! and well described by Glauber MC-

A more deformed system has larger v_2 ?

It depends on how you look at it...

Deformation

How deformed do we need Uranium to be in Glauber?

The pdg values for Uranium are $\beta_2 = 0.28$ and $\beta_4 = 0.093$.

To match the Au+Au curve, I need to scale them down by ~40%.

(a very convenient way)

Other harmonics: v_n

In central U+U, v₂ changes slightly, while other harmonics are almost constant.

- For n = 3, 4, and 5, v_n in U+U is similar to that in Au+Au.
- For v_1 and $v_{2,}$ the difference appears in central collisions (where we try to separate body-body and tip-tip).

Can we separate body-body and tip-tip?

We often assume multiplicity depends partially on the number of participants and partially on the number of binary collisions: $N_{ch} = n_{pp} * [xN_{coll} + (1-x)N_{part}/2]$.

Zero Degree Calorimeters (ZDC) were used to trigger on spectator neutrons.

Central U+U collisions, ideal testing ground for particle production:

Is larger v₂ associated with lower N_{ch}?

Very central: 1% ZDC

- Use normalized multiplicity to cancel out multiplicity independent efficiency
- ❖ Apply a linear fit to extract multiplicity dependence of v₂, the slope parameter

Slope vs ZDC

- ❖ A clear difference between U+U and Au+Au
- ❖ The ability to separate body-body and tip-tip collisions is enhanced when we go more central.
- Work in progress
- Compare with eccentricity calculated from Glauber simulations
 - β_2 fluctuation will pull the Glauber slopes to negative for Au+Au
 - \diamondsuit (Again) 60-70% β_2 will match the data for U+U
- ❖ Glauber results are scaled down to match the experimental v₂
 - ❖ Scale factor is 0.2 for U+U, 0.25 for AuAu

Local Parity Violation + CME

$$\frac{dN_{\pm}}{d\phi} \propto 1 + 2a_{\pm} \cdot \sin(\phi^{\pm} - \Psi_{RP})$$

A direct measurement of the Podd quantity "a" should yield zero.

 $\gamma = \left\langle \cos(\phi_{\alpha} + \phi_{\beta} - \psi_{RP}) \right\rangle^{\text{x}}$ $= \left\langle \left\langle v_{1,\alpha} v_{1,\beta} \right\rangle + \left\langle B_{in} \right\rangle - \left\langle \left\langle a_{\alpha} a_{\beta} \right\rangle + \left\langle a_{\alpha} a_{$

Non-flow/non-parity effects: largely cancel out

Directed flow: expected to be the same for SS and OS

CME + Parity-odd domain,

=> charge separation across RP

P-even quantity: still sensitive to charge separation 11

LPV correlator in U+U

- ❖ The difference between OS and SS is still there in U+U, with similar magnitudes to Au+Au.
- Consider OS-SS to be the signal
- N_{part} accounts for dilution effects

Chiral Magnetic Wave

Y. Burnier, D. E. Kharzeev, J. Liao and H-U Yee, Phys. Rev. Lett. 107, 052303 (2011)

Formation of electric quadrupole: $v_2^{\pm} = v_2 \mp (\frac{q_e}{\overline{\rho}_e})A_{\rm ch}$,

where charge asymmetry is defined as $A_{\rm ch} = \frac{N_+ - N_-}{N_+ + N_-}$.

Then $\pi^- v_2$ should have a positive slope as a function of A_{ch} , and $\pi^+ v_2$ should have a negative slope with the same magnitude. The integrated v_2 of π^- is not necessarily bigger than π^+ : (other physics) only the A_{ch} dependency matters for CMW testing.

Charge asymmetry dependency

- ❖ v₂ was measured with the Q-cumulant method.
- ❖ Clear A_{ch} dependency
- $v_2(A_{ch})$ slopes for π^{\pm} :
 - opposite sign
 - similar magnitude
- ❖ v₂ difference vs A_{ch} may have a non-zero intercept: other physics?

$$v_2^{\pm} = v_2 + (\frac{q_e}{\overline{\rho}_e}) A_{\rm ch}$$

Confirmed in U+U

Hard probes: D⁰

ള 200

180

160

140

120

100 80

60

significance 9.5 p_{_} 1.30±0.76 GeV

1.85

1.9

The study of the path-length dependence of hard probes has been initiated from the heavy flavor production in U+U.

Over 90% of charm quarks go into open charm production.

U+U 2012 $\sqrt{s_{NN}}$ =193 GeV Unlike - Mixed Signals even more mean 1.864±0.002 GeV 40 sigma 0.014±0.001 GeV γ² / ndf 37.62 / 27 significant will be 2000 1.865 ± 0.001 0.014 ± 0.001 const -6.735e+06 ± 141986 slope 3.873e+06± 74557 expected with the 1500 30 incoming Heavy 1000 500 Flavor 20 (HFT)! 40-80% 0-8.0GeV m_{Kπ} (GeV) 1.5 0.5 2.5 $m_{K\pi}$ (GeV)

16

Tracker

Hard probes: J/ψ and γ

Clear signals for quarkonia in U+U.

Summary

Flow

- \mathbf{v}_2 difference between Au+Au and U+U appears in central collisions.
- For Glauber to work, Uranium needs to be less deformed than pdg.
- The separation of body-body and tip-tip is in progress...

Chiral Magnetic Effects

- ❖ An imporant systematic check for LPV correlator was carried out in U+U.
- ❖ The Electric Quadrupole signal was qualitatively confirmed by U+U.

Hard probes

- **\$\ldot\\$** Significant signals were seen for D⁰, J/ ψ and γ
- ❖ Path-length dependence to be studied...
- ❖ We are taking full advantage of the U+U data: interesting features needs further investigation and calls for interpretation...

Backup slides

STAR

Possible physics background

charge conservation/cluster + v₂ Pratt, Phys.Rev.C83:014913,2011

Seemingly correlated!

Can we disentangle the relationship with U+U?

RHIC run2012, we took 350M minbias events and 14M central trigger events.